

Feedback
From 10 years of

Failure Analysis on connectors - all electronic sectors

Cédric Favarel

SUMMARY

- ► Introduction
 - Serma Technologies from Serma Group
 - Failure analysis centre of competence
- ▶ Main defects on connectors from field return
 - Package defect
 - o Electrochemical migration
 - Wear/Fretting corrosion
 - o Pollution/contamination/corrosion
 - Poor electrical contact
 - Whiskers
 - 0 ...
- ► Partial discharge characterization
- **▶** Discussion

SERMA ELECTRONICS TECHNOLOGIES

TECHNOLOGIES

FAILURE ANALYSIS ON PASSIVE COMPONENTS

- > Since 10 years: > **5000** FA on passive components
 - > **50%** on spatial and avionic industry sector
 - > 500 FA on connectors

ANALYSIS TECHNIQUES

Non destructive steps:

- Optical inspection
- X-rays inspection (2D/3D)
- X-rays fluorescence
- Scanning Electronic Microscope (SEM) / Material analysis EDX
- Electrical test

Destructive steps:

- Cross section
- Mechanical/chemical opening
- tensile test/insertion force
- Other particular analysis can be used: FTIR, Auger, IR Thermography...

PACKAGE DEFECT

- ► The main defects observable on package are related to delamination or cracks:
- → path for humidity/contamination
- possibility to make species migration under polarized conditions

▶ Failure mechanism:

Leakage path, up to short circuit between leads.

► Main cause:

Initial parts weakness (design)

Assembly conditions (process)

Environmental stresses (humidity management/ reflow profile/ handling, thermal expansion...)

ELECTROCHEMICAL MIGRATION (ECM)

► Failure mechanism:

Movement of metal ions between metallic conductors to form dendrites → Leading to current leak, insulation breakdown

► Main cause: design/environment

Moisture:

Few water is needed (condensation, relative humidity).

- Observed on copper, gold, tin, nickel, lead, palladium, solder.
- Not with metals that form protective oxide films (chromium, aluminum or tungsten)

Contamination:

Change the conductivity of the water and attract water on to the insulating surface between the conductors (flux).

Voltage:

Low potential difference needed depending the distance between the conductors.

- Increasing factor: temperature.

WEAR OUT FRETTING CORROSION

Fretting wear is generated by small-amplitude movement (few μm -100 μm) leading to the formation of small debris particles

EDX analysis:

- →Wear: no detection of oxygen element
- → Freeting corrosion: clear presence of oxygen
- ► **Failure mechanism:** degradation of mating layer, increase the electrical contact resistance, hot spot, thermal runaway → intermittent or contact loss.
- ▶ Main causes: Process/environment

Vibrations and/or changing temperature due to differences in thermal expansion coefficients of the mating materials.

- → Choice of coating is particularly important Gold coating
- ✓ Less susceptible to fretting degradation
- ✓ resistant to corrosive environment,
- ✓ require the use of underlayer (nickel)
- ✓ Thickness depending the application

WEAR OUT FRETTING CORROSION

Fretting wear is generated by small-amplitude movement (few μm -100 μm) leading to the formation of small debris particles

EDX analysis:

- →Wear: no detection of oxygen element
- → Freeting corrosion: clear presence of oxygen
- ► **Failure mechanism:** degradation of mating layer, increase the electrical contact resistance, hot spot, thermal runaway → intermittent or contact loss.
- ▶ Main causes: Process/environment

Vibrations and/or changing temperature due to differences in thermal expansion coefficients of the mating materials.

- → Choice of coating is particularly important Gold coating
- ✓ Less susceptible to fretting degradation
- ✓ resistant to corrosive environment,
- ✓ require the use of underlayer (nickel)
- ✓ Thickness depending the application

POLLUTION

▶ Failure mechanism:

Pollution make a direct insulating layer leading to an increase of the contact resistance.

The phenomenon leads to the risk of intermittent or contact loss.

► Main cause: environment

Pollution could mainly come from assembly process, or with external environment

In presence of Cl₂, H₂S, NO₂ and SO₂ complex compound can appears

For example NaCl salts at the interface of contacts is conductive in water and insulating in its crystalline form.

POOR ELECTRICAL **CONTACT**

► Electrical connection is made through small asperities

► Failure mechanism:

Depending the type of coatings, material, shape and mating force:

- → only 1% of the apparent contact area is making contact.
- → phenomenon of constriction resistance/film resistance occurs.
- → Increase the resistance can cause local heating, oxidation, fusion up to open mode.
- ► Main cause: design/process

Too low contact force could lead to hot spot risk

- contact resistance is unstable,
- small change in force \rightarrow large change in resistance.

PRESS FIT / PCB DEGRADATION

► Failure mechanism:

Deformation of the metallized via or internal layer during insertion

- Cracks/deformation of PCB
- → Lead to insulation breakdown/short circuit.
- Rupture of copper track
- → lead to open circuit
- ► **Main cause:** design/process

Dimensional mismatch pin/via diameter/pressure.

TIN WHISKERS

► Failure mechanism:

Whiskers grow across circuit connection up to > 200µm leading to sudden failure and intermittent short circuit.

► **Main cause:** design/environment

Mechanism not fully understood...

Main energy for growth may comes from microstrains or from externally applied pressure.

Avoid or control whiskers apparition:

→ Tin alloy with a minimum of 3% of Lead

(Specification: ESCC No 25500 / MIL-STD 1580)

→ « reflow »: tin heated to a T°C above tin melting point

PARTIAL DISCHARGE CHARACTERIZATION

▶ Objective:

Detect insulation defect

Diagnostic tools increasingly used in R&D lab and industry

▶ Definition:

Localized electrical discharge that does not completely pass through an insulator (device remains functional). Discharge limited because:

- → the local electric field is not sufficient to cause its total propagation
- → the propagation is blocked by an insulator whose breakdown field is higher

▶ Failure mechanism:

Time dependant failure.

Partial discharges lead to a degradation of materials under the action of constraints (thermal, chemical, mechanical) over time. When the insulating material is too damaged, a complete electric arc occurs \rightarrow component failure.

→ Partial discharge threshold tend to decrease under low pressure environment

Main defect:

▶ Internal discharges

Inside the insulator:

- → bubble, particle...
- → dielectric strength locally reduced

▶ Corona effect

Appears at the corners of materials under an electric field:

- → point effect
- → ionization of the surrounding air near its corners

▶ Surface discharge

Generated at the "triple" point metal/insulator/air:

→ drop of water, pollution, dust..., present on the surface of the insulator. Early problems of insulation degradation often linked to the presence of water

→ Non destructive test particularly interesting during preliminary inspection process for FA

- Depending on the position and the level of discharge observed
 - → Possibility to localize and identify the first hypothesis of defect

DEFECT APPARITION IN CONNECTOR LIFE

THANK YOU FOR YOUR ATTENTION

CÉDRIC FAVAREL

SERMA TECHNOLOGIES

14, Rue Galilée - CS 10055

33615 PESSAC Cedex - FRANCE

+33 (0)5 57 26 08 88

c.favarel@serma.com

csc@serma.com

Table of acronyms and abbreviations

- ► SEM: Scanning Electron Microscopy
- ► TEM: Transmission Electron Microscopy
- ► EDX/EDS: Energy dispersive X-ray Spectrometry
- ► FA: Failure Analysis
- ► CA: Construction Analysis
- ► DPA: Destructive Physical Analysis
- ► FTIR: Fourier-Transform Infrared Spectroscopy
- ► PCB: Printed Circuit Board
- ► ECM: Electro Chemical migration

